ZLBC0321p Biochemisty I - lecture

Faculty of Medicine
autumn 2020
Extent and Intensity
2/0/0. 1 credit(s). Type of Completion: z (credit).
Taught online.
Teacher(s)
doc. RNDr. Jiří Dostál, CSc. (lecturer)
RNDr. Hana Paulová, CSc. (lecturer)
Mgr. Jiří Slanina, Ph.D. (lecturer)
prof. RNDr. Eva Táborská, CSc. (lecturer)
doc. RNDr. Josef Tomandl, Ph.D. (lecturer)
Mgr. Martina Drabinová (assistant)
Mgr. Zdenka Fohlerová, Ph.D. (assistant)
Mgr. Jana Gregorová, Ph.D. (assistant)
MUDr. Miroslava Hlaváčová, Ph.D. (assistant)
MUDr. Michaela Králíková, Ph.D. (assistant)
Mgr. Ondřej Peš, Ph.D. (assistant)
Mgr. Jindra Smutná, Ph.D. (assistant)
Monika Šudáková (assistant)
Mgr. Marie Tomandlová, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Eva Táborská, CSc.
Department of Biochemistry - Theoretical Departments - Faculty of Medicine
Contact Person: Monika Šudáková
Supplier department: Department of Biochemistry - Theoretical Departments - Faculty of Medicine
Timetable
Thu 13:00–14:40 B11/334
Prerequisites (in Czech)
ZLBF0222c Med.Physics and Inf. II-pract. && ZLBI0222c Biology II -pract.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of the course is to obtain knowledge on essential metabolic processes on the cell level. The course provides the essential knowledge for future understanding of metabolism on organe and inter-organe level and its disturbances.
Learning outcomes
In the end of the course will students understand the properties and function of enzymes
Describes basic catabolic and anabolic pathways of carbohydrate, lipid and protein metabolism, and their relationships.
Understand the principles of energy production, utilization and deposition at the cellular level.
Explain the function of cell membranes and the principle of compartmentalization at the cellular level and the transport processes on the membrane.
Describe protein synthesis, starting with the replication and transcription, translation and post-translational modifications. Understand the relationship between protein structure and function.
Explain the function of hemoglobin in oxygen transport and maintaining acid-base balance.
Discusses the principles of some diseases at the molecular level.
Syllabus
  • Enzymes. Characteristic features of biocatalysis, enzyme structure and function, nomenclature and classification of enzymes. Enzyme cofactors, review of structures and functions. Mechanisms of enzyme action. Kinetics of enzyme catalyzed reactions. Assays of enzyme activity, the conditions used. Factors affecting catalytic activity of enzymes, types of enzyme inhibition. Metabolism: basic concepts and design. Biological oxidations, generation of high-energy compounds. Saccharide metabolism: the glycolytic pathway and aerobic decarboxylation of pyruvate. Gluconeogenesis. Glycogen biosynthesis and breakdown. The pentose phosphate pathway. The glucuronate pathway. Interconversions of monosaccharides and of their derivatives. Protein and amino acid metabolism. The common reactions in amino acid degradation. The ureosynthetic cycle. Metabolic breakdown of individual amino acids. Biosynthesis and breakdown of fatty acids, ketogenesis. Synthesis of triacylglycerols. Metabolism of phospholipids and glycolipids. Synthesis of eicosanoids. Biosynthesis and transformations of cholesterol, biosynthesis of bile acids. Interrelationships among the major pathways involved in energy metabolism. The citric acid cycle. Synthesis of haem. Mitochondria. Oxidative phosphorylation - mitochondrial electron transport chain, synthesis of ATP. Biosynthesis and catabolism of purine and pyrimidine nucleotides. Chromatin, DNA replication. DNA transcription. Regulation of gene expression. Protein synthesis and post-translational processing.
Literature
    required literature
  • KOOLMAN, Jan and Klaus-Heinrich RÖHM. Barevný atlas biochemie. Grada. Praha, 2012. 498 pp. ISBN 978-80-247-2977-0. info
    recommended literature
  • FERRIER, Denise R. Biochemistry. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2014. 552 s. ISBN 9781451175622. info
Teaching methods
Teaching form are lectures. Supplementary subjects are seminars VSBC021s
Assessment methods
The course continues in the spring semester, after which the course is completed by an exam
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
Information on the extent and intensity of the course: 30.
Listed among pre-requisites of other courses
The course is also listed under the following terms autumn 2021.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/med/autumn2020/ZLBC0321p