M1110B Lineární algebra a geometrie I

Přírodovědecká fakulta
podzim 2025
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Mária Šimková, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M1110B/01: Čt 12:00–13:50 M4,01024, M. Čadek
M1110B/02: Út 18:00–19:50 M5,01013, M. Šimková
Předpoklady
Středoškolská matematika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Lineární algebra patří k základům matematického vzdělání. Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, *budou schopni tyto pojmy běžně používat v dalším studiu, *naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Výstupy z učení
Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, * budou schopni tyto pojmy běžně používat v dalším studiu, * naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Osnova
Vektorové prostory. Operace s maticemi. Gaussova eliminace. Podprostory. Lineární nezávislost. Báze a dimenze. Souřadnice. Lineární zobrazení. Matice lineárního zobrazení. Soustavy lineárních rovnic. Determinanty. Vlastní čísla a vektory. Lineární modely.
Literatura
  • PAVOL, Zlatoš. Lineárna algebra a geometria. Bratislava: Albert Marenčin PT, s.r.o., 2011, 741 s. ISBN 978-80-8114-111-9. info
  • PASEKA, Jan a Pavol ZLATOŠ. Lineární algebra a geometrie I. Elportál. Brno: Masarykova univerzita, 2010. ISSN 1802-128X. URL info
  • HORÁK, Pavel. Úvod do lineární algebry. 3. vyd. Brno: Rektorát UJEP Brno, 1980, 135 s. info
  • ANTON, Howard a Chris RORRES. Elementary linear algebra : applications version. 8th ed. Hoboken, N.J.: John Wiley & Sons, 2000, xvi, 822. ISBN 0471170526. info
  • ŠMARDA, Bohumil. Lineární algebra. 2. přeprac. vyd. Praha: Státní pedagogické nakladatelství, 1985, 159 s. info
  • ŠIK, František. Lineární algebra : zaměřená na numerickou analýzu. Vyd. 1. Brno: Masarykova univerzita, 1998, 177 s. ISBN 8021019662. info
  • SLOVÁK, Jan. Lineární algebra. Učební texty. Brno: Masarykova univerzita, 1998, 138 s. elektronicky dostupné na www.math.muni.cz/~slovak. ISBN nemá. info
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
Výukové metody
Přednášky, cvičení a domácí úlohy.
Metody hodnocení
Zkouška se skládá z části semestrální, písemky ve zkouškovém období a ústní zkoušky. Z 6 krátkých písemek v semestru je potřeba získat aspoň 50 % bodů. Písemná zkouška ve zkouškovém období má část početní a teoretickou. Je potřeba získat celkem 12 bodů z 22. Studenti, kteří získají předepsaný počet bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce a cvičení, v případě distanční výuky vystaveném v průběhu semestru na webové stránce předmětu. Budete tázáni na definice, věty, příklady, ale i důkazy. Klade se důraz na porozumění, nestačí znalost definic a vět, chtějí se příklady na definované pojmy a hlavní věty. Je požadovaná schopnost provádět jednoduché důkazy. Zde je seznam témat, která jsou vyžadována bezpodmínečně. Jejich neznalost znamená, že u zkoušky neuspějete: 1. Pojem vektorového prostoru, znalost příkladů. 2. Pojem vektorového podprostoru, příklady, součet a průnik. 3. Pojem lineární nezávislosti vektorů, příklady. 4. Pojem lineárního obalu, příklady. 5. Vysvětlení algoritmu, který ze seznamu vektorů vybere lineárně nezávislé se stejným lineárním obalem. 6. Báze vektorového prostoru, souřadnice vektoru v dané bázi, dimenze, příklady. 7. Lineární zobrazení, jádro, obraz, příklady. 8. Hodnost matice. 9. Řešení soustav lineárních rovnic, věty o struktuře řešení, příklady na tyto věty. 10. Definice determinantu pomocí jeho vlastností. Další poznámky: Vyučující během přednášek a cvičení rádi zodpoví vaše dotazy, pokud něčemu nebudete rozumět. K dispozici máte mnoho zdrojů, které vám pomohou s přípravou ke zkoušce, včetně učebnice, poznámek z přednášek a online materiálů.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Přednášky a cvičení budou prezenční formou v době podle rozvrhu. Metody hodnocení - viz výše. Aktuální informace najdete v úvodní části interaktivní osnovy. Rovněž se budou posílat emailem.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2024.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/podzim2025/M1110B