M6140 Topologie

Přírodovědecká fakulta
jaro 2020
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Jiří Rosický, DrSc. (přednášející)
Mgr. Ivan Di Liberti, Ph.D. (cvičící)
Garance
prof. RNDr. Jiří Rosický, DrSc.
Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Rozvrh
Út 12:00–13:50 M4,01024
  • Rozvrh seminárních/paralelních skupin:
M6140/01: Út 18:00–18:50 M2,01021, I. Di Liberti
Předpoklady
M3100 Matem. analýza III
Matematická analýza: metrické prostory, spojité funkce
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Přednáška seznamuje s jednou ze základních oblastí moderní matematiky. Zavádí topologické prostory, čímž přirozeně zobecňuje známé pojmy metrického prostoru a spojitého zobrazeni. Prezentuje axiomy oddělitelnosti, pojmy souvislosti a kompaktnosti. Vysvětluje pojem homotopie a zavádí fundamentální grupu včetně jejího využití. Konečně zavádí uniformní prostory a stejnoměrně spojitá zobrazení.
Výstupy z učení
Pochopení pojmu spojitosti formalizovaného pomocí topologických a uniformních prostoru;
porozumění pojmům oddělitelnosti, souvislosti a kompaktnosti;
schopnost vidět topologické pozadí teorie spojitých reálných funkcí a metrických prostorů;
představa o pojmu homotopie včetně fundamentální grupy a jejího využití k důkazu Brouwerovy věty o pevném bodě a základní věty algebry.
Osnova
  • 1. Topologické prostory: definice, příklady
  • 2. Spojitost: spojitá zobrazení, homeomorfismy
  • 3. Základní topologické konstrukce: podprostory, kvocienty, součiny, součty
  • 4. Axiomy oddělitelnosti: T0-prostory, T1-prostory, Hausdorffovy prostory, regulární prostory, normální prostory
  • 5. Reálné funkce: úplně regulární prostory, Urysohnovo lemma, Tietzeho věta
  • 6. Kompaktní prostory: kompaktnost, základní vlastnosti, Tichonovova věta
  • 7. Kompaktifikace: lokálně kompaktní prostory, jednobodová kompaktifikace, Čechova-Stoneova kompaktifikace
  • 8. Souvislost: souvislé prostory, komponenty, součin souvislých prostorů, obloukově souvislé prostory, lokálně souvislé prostory, kontinua, 0-dimenzionální prostory
  • 9. Uniformní prostory: definice, základní vlastnosti, stejnoměrně spojitá zobrazení, kompaktní uniformní prostory, metrizovatelnost, uniformizovatelnost
  • 10. Homotopie: definice, základní vlastnosti, jednoduše souvislé prostory, fundamentální grupa, Brouwerova věta v dimenzi 2, základní věta algebry
  • 11. Brouwerova věta: komplexy, triangulace, Spernerovo lemma, Brouwerova věta
Literatura
  • PULTR, Aleš. Podprostory euklidovských prostorů. 1. vyd. Praha: Státní nakladatelství technické literatury, 1986. 253 s. info
  • CHVALINA, Jan. Obecná topologie. 1. vyd. Brno: Rektorát UJEP, 1984. 193 s. info
  • PULTR, Aleš. Úvod do topologie a geometrie. 1. 1. vyd. Praha: Státní pedagogické nakladatelství, 1982. 231 s. info
Výukové metody
Přednáška: teoretická výuka kombinovaná s příklady aplikací
Cvičení: teoretické cvičení zaměřené na procvičení základních pojmů a tvrzení
Metody hodnocení
Zkouška ústní.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, podzim 2020.