Bi7090 Molecular biology of eukaryotes

Faculty of Science
Autumn 2007
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Šmarda, CSc. (lecturer)
doc. Mgr. Petr Beneš, Ph.D. (lecturer)
prof. RNDr. Jana Šmardová, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jan Šmarda, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Jan Šmarda, CSc.
Timetable
Tue 9:00–10:50 BR2
Prerequisites
Ex_3065 Molekulární biologie || Imp_9115 Molekulární biologie || B3120 Molecular and cell biology || B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
Basic course of Molecular biology.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course is intended to provide information about the most recent development within the field of moleular biology of eukaryotic cell. The most dynamic areas of the research are espetially in the focus as, for example, molecular mechanisms of cell cycle regulation, signal transduction and cancer. In addition, detail description of structure and function of the neural, muscle and immune systems is also included in the course.
Syllabus
  • 1. Molecular mechanisms of cell cycle regulation: phases, control points, cyclins, CDKs, principles of cell cycle regulation, cell cycle deregulation and tumor formation). 2. Cell signalling I: principles, signal types, receptor types. 3. Cell signalling II: SH2 domain, secondary messengers, JAK/STAT,MAP, Ras, Raf kinases, protein G,cAMP, Ca++ ions in signal transduction, PKA, PKC, PKCa, signals and cellular skeleton. 4. Cell-cell and cell-matrix interactions: matrix types, structure, function, kolagen, hyaluronic acid, proteoglykans, cadherins,laminin, fibronectin, selectins, integrins, types cell-cell interactions. 5. Molecular mechanisms of neural and muscle systems: neural cells, synapses, action potential, structure of channel proteins, membrane permeability, neuro-muscle connections, thin and thick filaments, molecular mechanisms of muscle contraction, muscle cell differentiation, Myo protein. 6.Molecular immunology: hematopoietic cell differentiation, growth factors in hematopoiesis, lymfokins, monokins,interferons,TNF, antigen processing, MHCI and MHCII. 7.Molecular principles of tumor formation I: tumor cells, malignant transformation, roles of oncogenes, tumor suppressors and cell death regulators in tumor formation). 8. Molecular principles of tumor formation II: proto-oncogenes and their products, oncogene co-operation in carcinogenesis, apoptosis, clinical implications, viruses in malignant transformation. 9.Chromatin: nucleosomes, methods of chromatin analysis, importance of chromatin changes. 10. Yeast model system: live cycle, mating type determination, mating type switching, yeast artificial, chromosomes. 11. Regulated protein degradation: protein labelling by ubiquitin, proteasom, other ways of protein labelling for degradation, the role of ubiquitin system in disease pathogenesis. 12. Protein translocation: protein transfer to endoplasmic retikulum, signal sequence, chaperons, chaperonins, smooth ER and lipid synthesis, Golgi apparatus - organisation, function, metabolisms of lipids in GA, protein export from GA, mechanisms of vesikular transport, phagocytosis.
Literature
  • ALBERTS, Bruce. Essential cell biology : an introduction to the molecular biology of the cell. New York: Garland Publishing, 1998, xxii, 630. ISBN 0-8153-2045-0. info
  • ALBERTS, Bruce. Molecular biology of the cell. 3rd ed. New York: Garland Publishing, Inc., 1994, xliii, 129. ISBN 0-8153-1620-8. info
Assessment methods (in Czech)
Zkouška má dvě části: písemnou a ústní.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
http://www.sci.muni.cz/labweb/prednask/predn.html
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2007, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2007/Bi7090