M1101 Matematická analýza I

Přírodovědecká fakulta
podzim 2013
Rozsah
4/2/0. 6 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. Mgr. Petr Hasil, Ph.D. (přednášející)
doc. Mgr. Peter Šepitka, Ph.D. (cvičící)
doc. Mgr. Petr Zemánek, Ph.D. (cvičící)
Garance
prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 18:00–19:50 A,01026, St 14:00–15:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M1101/01: Po 15:00–16:50 M4,01024, P. Hasil
M1101/02: Pá 8:00–9:50 M4,01024, P. Šepitka
M1101/03: St 16:00–17:50 M2,01021, P. Zemánek
Předpoklady
! M1100 Matematická analýza I && !NOW( M1100 Matematická analýza I )
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol. Studenti se budou orientovat v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné a budou schopni aplikovat tyto metody na praktické úlohy.
Osnova
  • Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce.
  • Funkce a posloupnosti: Posloupnosti reálných čísel, limita a spojitost funkcí, vlastnosti spojitých funkcí.
  • Derivace funkce: základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině.
  • Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí).
  • Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
Literatura
  • DOŠLÁ, Zuzana a Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné. 2. dotisk 1. vyd. Brno: Masarykova univerzita, 2008, 215 s. ISBN 978-80-210-3121-0. info
  • DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011, 222 s. ISBN 978-80-210-5635-0. info
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. Vyd. 1. Brno: Rektorát UJEP, 1980, 89 s. info
  • Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 6. nezměn. Praha: Academia, 1974, 391 s. URL info
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
Výukové metody
Standardní teoretická přednáška doplněná cvičením.
Metody hodnocení
Přednáška 4 + cvičení 2 hod. týdně, 2 kontrolní písemky (30% min. 10%) ve cvičeních, písemná (40% min. 10%)a ústní část (30% min. 10%) zkoušky s celkovým hodnocením daným dílčích výsledků (min. 30%)
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2010 - akreditace, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018.