PřF:F5030 Základy kvant. mech. - Informace o předmětu
F5030 Základy kvantové mechaniky
Přírodovědecká fakultapodzim 2019
- Rozsah
- 3/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. Mgr. Dominik Munzar, Dr. (přednášející)
doc. Mgr. Jiří Chaloupka, Ph.D. (cvičící) - Garance
- prof. Mgr. Dominik Munzar, Dr.
Ústav fyziky kondenzovaných látek – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: prof. Mgr. Dominik Munzar, Dr.
Dodavatelské pracoviště: Ústav fyziky kondenzovaných látek – Fyzikální sekce – Přírodovědecká fakulta - Rozvrh
- Čt 12:00–14:50 F1 6/1014
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- F4120 Teoretická mechanika || F4050 Úvod do fyziky mikrosvěta
Absolvování základního kurzu fyziky. - Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Jedná se o základní kurz kvantové mechaniky.
Hlavní cíle kurzu jsou: zvládnutí základního matematického aparátu používaného v kvantové mechanice; pochopení pojmů amplitudy pravděpodobnosti a vlnové funkce; zvládnutí řešení Schroedingerovy rovnice v jednoduchých situacích (potenciálové jámy, schody a bariéry, harmonický oscilátor, atom vodíku); schopnost aplikovat přibližné metody (poruchová teorie a variační metoda) v nejjednodušších situacích. - Výstupy z učení
- Student bude po absolvování předmětu schopen:
- formulovat jednoduché fyzikální úlohy na úrovni kvantové mechaniky
- schopen řešit zformulované úlohy pomocí Schrodingerovy rovnice a/nebo jejích aproximací - Osnova
- I. Úvodní část
- 1. Prvky fyziky mikrosvěta: diskrétnost, vlnově-částicový dualismus, neurčitost, komplementarita.
- 2. Jednočásticová vlnová mechanika: De Broglieho vlny, Schroedingerova rovnice, obecné vlastnosti řešení v jednorozměrném případě, částice v potenciálové jámě, tunelování přes potenciálovou bariéru, zmínka o aplikacích v oblasti polovodičových nanostruktur.
- 3. Pravděpodobnostní interpretace vlnové funkce a její Fourierovy transformace, střední hodnoty funkcí závislých na poloze a hybnosti, relace neurčitosti pro polohu a hybnost.
- 4. Příklady systémů s konečnou dimenzí a náznak jejich kvantověmechanického popisu (částice, pro kterou je dostupných pouze několik diskrétních hladin, spin, polarizační stav světla).
- II. Formalismus
- 1. Abstraktní Hilbertův prostor, stavové vektory a jejich reprezentace, lineární operátory a jejich reprezentace, hermiteovské operátory a jejich vlastnosti.
- 2. Postuláty kvantové mechaniky týkající se popisu stavu systému, fyzikálních veličin a měření; relace neurčitosti v obecném případě, úplné soubory navzájem komutujících operátorů.
- 3. Časový vývoj: Schroedingerova rovnice v obecném případě, Heisenbergova reprezentace, souvislosti s klasickou fyzikou (Ehrenfestovy věty, klasická limita Schroedingerovy rovnice), stacionární případ.
- III. Aplikace
- 1. Harmonický oscilátor: řešení problému algebraickou metodou, s využitím kreačních a anihilačních operátorů, energiové spektrum a vlnové funkce, limita velkých kvantových čísel, zmínka o použití v teorii záření černého tělesa a v teorii dynamiky jader.
- 2. Moment hybnosti v kvantové mechanice: komutační relace pro složky orbitálního momentu hybnosti částice, rozšíření na složky celkového momentu hybnosti libovolného systému, stanovení vlastních hodnot velikosti momentu hybnosti a vybrané složky momentu hybnosti algebraickou metodou, vlastní funkce v případě orbitálního momentu hybnosti, popis spinu elektronu, skládaní momentů hybnosti (v náznaku).
- 3. Centrální pole: zjednodušení problému s využitím rotační symetrie hamiltoniánu, radiální Schroedingerova rovnice a náznak řešení, energiové spektrum a vlnové funkce atomu vodíku.
- 4. Přibližné metody: stacionární teorie poruch pro nedegenerované energiové hladiny i pro degenerovaný případ, nestacionární teorie poruch, pravděpodobnost přechodu mezi hladinami vlivem poruchy, Fermiho zlaté pravidlo, zmínka o aplikacích v teorii optické odezvy, variační metoda, zmínka o aplikacích v kvantové chemii.
- 5. Systémy identických částic: postulát o symetrii/antisymetrii vlnových funkcí souboru identických částic vůči výměně částic, bosony a fermiony, vztah mezi symetrií a spinem, Pauliho princip, vlnové funkce souborů neinteragujících částic, zmínka o aplikacích v teorii kondenzovaných látek (základní stav Bose-Einsteinova kondenzátu, Fermiho moře).
- Literatura
- ZETTILI, Nouredine. Quantum mechanics : concepts and applications. Chichester: John Wiley & Sons, 2001, xiv, 649. ISBN 0471489441. info
- FORMÁNEK, Jiří. Úvod do kvantové teorie. Vyd. 2., upr. a rozš. Praha: Academia, 2004, xii, 504-9. ISBN 8020011765. info
- GRIFFITHS, David Jeffrey. Introduction to quantum mechanics. Englewood Cliffs: Prentice Hall, 1995, 9, 394 s. ISBN 0-13-124405-1. info
- MARX, György. Úvod do kvantové mechaniky. Translated by Luděk Bednář - Zdeněk Urbánek. Vyd. 1. Praha: Státní nakladatelství technické literatury, 1965, 294 s. URL info
- LANDAU, Lev Davidovič a Jevgenij Michajlovič LIFŠIC. Quantum mechanics : non-relativistic theory. Translated by J. B. Sykes - J. S. Bell. 3rd ed., rev. and enl. Amsterdam: Butterworth-Heinemann, 1977, xv, 677. ISBN 0750635398. info
- BLOCHINCEV, Dimitrij Ivanovič. Základy kvantové mechaniky. Translated by Jan Cejpek. 1. vyd. Praha: Nakladatelství Československé akademie věd, 1956, 545 s. URL info
- MATTHEWS, Paul T. Základy kvantové mechaniky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1976, 256 s. URL info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. I, Principy [Celý, 1986]. 1. vyd. Brno: Rektorát UJEP, 1986, 176 s. info
- CELÝ, Jan. Základy kvantové mechaniky pro chemiky. Vyd. 1. Brno: Rektorát UJEP, 1983, 161 s. info
- DAVYDOV, Aleksandr Sergejevič. Kvantová mechanika. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1978, 685 s. URL info
- LIBOFF, Richard L. Introductory quantum mechanics. 2nd ed. Reading: Addison-Wesley Publishing Company, 1993, vii, 782 s. ISBN 0-201-54715-5. info
- PIŠÚT, Ján, Ladislav GOMOLČÁK a Vladimír ČERNÝ. Úvod do kvantovej mechaniky. 2. vyd. Bratislava: Alfa, 1983, 551 s. info
- LANDAU, Lev Davidovič a Jevgenij Michajlovič LIFŠIC. Úvod do teoretickej fyziky. 1. vyd. Bratislava: Alfa, 1982, 357 s. info
- Výukové metody
- Přednášky a řešení příkladů ve cvičení.
- Metody hodnocení
- Kurz je ukončen zkouškou, která má písemnou část (test obsahující zhruba 20 jednoduchých otázek a krátkých příkladů a písemná práce obsahující dvě až tři úlohy) a ústní část. Nutnou podmínkou pro úspěšné absolvování zkoušky je získání alespoň poloviny bodů z testu. Podmínkou přístupu ke zkoušce je aktivní účast na cvičeních a získání alespoň poloviny bodů z průběžně zadávaných písemných prací. V odůvodněných případech stanoví cvičící náhradní formu splnění této podmínky.
- Navazující předměty
- Informace učitele
- http://www.physics.muni.cz/~tomtyc/kvantovka.html
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2019/F5030