M1100F Matematická analýza I

Přírodovědecká fakulta
podzim 2019
Rozsah
4/2/0. 6 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. Mgr. Petr Hasil, Ph.D. (přednášející)
Mgr. Pavla Musilová, Ph.D. (cvičící)
Mgr. Marianna Kustyánová (pomocník)
Garance
doc. Mgr. Petr Hasil, Ph.D.
Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Rozvrh
Út 14:00–15:50 A,01026, St 18:00–19:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M1100F/01: Čt 13:00–14:50 F2,02012, P. Musilová
M1100F/02: Čt 9:00–10:50 F4,03017, P. Musilová
Předpoklady
! OBOR ( AMV ) && ! OBOR ( FINPOJ ) && ! OBOR ( UM ) && ! OBOR ( OM ) && ! OBOR ( STAT )
Středoškolská matematika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné a základy teorie a využití diferenciálních rovnic. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol. Studenti se budou orientovat v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné a budou schopni aplikovat tyto metody na konkrétní úlohy. Dále budou seznámeni se základními diferenciálními rovnicemi a metodami jejich řešení.
Výstupy z učení
Studenti budou po absolvování předmětu schopni:
definovat a interpretovat základní pojmy diferenciálního a integrálního počtu funkcí jedné proměnné;
formulovat příslušná matematická tvrzení a vysvětlit metody jejich důkazů;
analyzovat úlohy související s probíranou tématikou;
orientovat se v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné;
aplikovat metody diferenciálního a integrálního počtu na konkrétní úlohy;
orientovat se v problematice základních diferenciálních rovnic.
Osnova
  • Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce. Axiomy reálných čísel a jejich vlastnosti.
  • Funkce a posloupnosti: Posloupnosti reálných čísel, limita a spojitost funkcí, vlastnosti spojitých funkcí.
  • Derivace funkce: Základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině.
  • Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí).
  • Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
  • Elementární metody řešení obyčejných diferenciálních rovnic: existence a jednoznačnost řešení, rovnice 1. řádu (separace proměnných, lineární rovnice, metoda integračního faktoru), rovnice vyšších řádů s konstantními koeficienty, systémy lineárních rovnic s konstantními koeficienty.
Literatura
    doporučená literatura
  • DOŠLÁ, Zuzana a Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné. 2. dotisk 1. vyd. Brno: Masarykova univerzita, 2008. 215 s. ISBN 978-80-210-3121-0. info
  • DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011. 222 s. ISBN 978-80-210-5635-0. info
  • RÁB, Miloš. Metody řešení diferenciálních rovnic. I, Obyčejné diferenciální rovnice. 1. vyd. Praha: Státní pedagogické nakladatelství, 1989. 68 s. info
    neurčeno
  • ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 3., aktual. vyd. Brno: Masarykova univerzita, 2012. Elportál. ISBN 978-80-210-5882-8. url PURL info
  • HASIL, Petr a Petr ZEMÁNEK. Sbírka řešených příkladů z matematické analýzy II. https://goo.gl/hSLUV2
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. 1. vyd. Brno: Rektorát UJEP Brno, 1980. 89 s. info
  • JARNÍK, Vojtěch. Diferenciální počet (I). 6. vyd. Praha: Academia, 1974. 391 s. info
  • JARNÍK, Vojtěch. Integrální počet (I). 5. vyd. Praha: Academia, 1974. 243 s. info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003. 460 s. ISBN 8072005871. info
  • ADAMS, R. A. a Christopher ESSEX. Calculus : a complete course. 7th ed. Toronto: Pearson, 2010. xvi, 973. ISBN 9780321549280. info
  • BRAND, Louis. Advanced calculus : an introduction to classical analysis. New York: John Wiley & Sons, 1955. 574 s. info
  • An introduction to ordinary differential equations. Edited by James C. Robinson. New York: Cambridge University Press, 2004. xiv, 399 p. ISBN 0521533910. info
Výukové metody
Standardní teoretická přednášky doplněné cvičeními.
Metody hodnocení
Přednáška 4 hodiny týdně, cvičení (povinná) 2 hodiny týdně.
Ve cvičeních 3 kontrolní písemky (dohromady 10 % z celkového hodnocení).
Zkouška: Písemná část (55 %) a ústní část (35 %).
K úspěšnému zvládnutí: Minimálně 5 z 10 bodů z kontrolních písemek, poté celkově minimální zisk 45 %.
Výsledky kontrolních písemek jsou součástí celkového hodnocení. Všechna procenta jsou uvedena vzhledem k celkovému úhrnu za celý semestr.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2018, podzim 2020.