PřF:M7180 Funkcionální analýza II - Informace o předmětu
M7180 Funkcionální analýza II
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/1/0. 5 kr. Ukončení: zk.
- Vyučující
- doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející) - Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M6150 Funkcionální analýza I
Matematická analýza. Funkcionální analýza I. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Algebra a diskrétní matematika (program PřF, N-MA)
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Funkcionální analýza patří mezi základní univerzitní kurzy matematiky. Je využívána v řadě dalších předmětů i v mnoha aplikacích. Hlavním cílem předmětu je seznámit posluchače se spektrální teorií lineárních operátorů a derivováním v Banachových prostorech.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
definovat a interpretovat základní pojmy užívané v uvedených oblastech;
formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů;
ovládat efektivní techniky používané v těchto oblastech;
analyzovat vybrané úlohy související s probíranou tématikou. - Osnova
- 0. Lineární operátory (opakování z FA I).
- 1. Kompaktní operátory.
- 2. Diferenciální počet v Banachových prostorech.
- 3. Striktně a uniformně konvexní prostory.
- 4. Stupeň zobrazení pro nelineární operátory na Banachových prostorech. Věty o pevném bodu.
- 5. Integrace funkcí s hodnotami v Banachových prostorech.
- Literatura
- doporučená literatura
- DRÁBEK, Pavel a Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič a Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana a Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Výukové metody
- Přednášky a cvičení
- Metody hodnocení
- Závěrečná ústní zkouška (60 minut) na 20 bodů. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 10 bodů.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
- Statistika zápisu (podzim 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2019/M7180