M1100F Matematická analýza I

Přírodovědecká fakulta
podzim 2024
Rozsah
4/2/0. 6 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně
Vyučující
prof. Mgr. Petr Hasil, Ph.D. (přednášející)
Mgr. Darek Cidlinský (cvičící)
Mgr. Lenka Czudková, Ph.D. (cvičící)
Dr. rer. nat. Tereza Jeřábková (pomocník)
Garance
prof. Mgr. Petr Hasil, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 14:00–15:50 A,01026, St 16:00–17:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M1100F/01: Čt 10:00–11:50 F4,03017, D. Cidlinský
M1100F/02: Čt 10:00–11:50 F3,03015, L. Czudková
M1100F/03: Út 8:00–9:50 F1 6/1014, L. Czudková
Předpoklady
!OBOR(AMV) && !OBOR(FINPOJ) && !OBOR(UM) && !OBOR(OM) && !OBOR(STAT)
Středoškolská matematika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné a základy teorie a využití diferenciálních rovnic. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol. Studenti se budou orientovat v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné a budou schopni aplikovat tyto metody na konkrétní úlohy. Dále budou seznámeni se základními diferenciálními rovnicemi a metodami jejich řešení.
Výstupy z učení
Studenti budou po absolvování předmětu schopni:
definovat a interpretovat základní pojmy diferenciálního a integrálního počtu funkcí jedné proměnné;
formulovat příslušná matematická tvrzení a vysvětlit metody jejich důkazů;
analyzovat úlohy související s probíranou tématikou;
orientovat se v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné;
aplikovat metody diferenciálního a integrálního počtu na konkrétní úlohy;
orientovat se v problematice základních diferenciálních rovnic.
Osnova
  • Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce. Axiomy reálných čísel a jejich vlastnosti.
  • Funkce a posloupnosti: Posloupnosti reálných čísel, limita a spojitost funkcí, vlastnosti spojitých funkcí.
  • Derivace funkce: Základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině.
  • Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí).
  • Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
  • Elementární metody řešení obyčejných diferenciálních rovnic: existence a jednoznačnost řešení, rovnice 1. řádu (separace proměnných, lineární rovnice, metoda integračního faktoru), rovnice vyšších řádů s konstantními koeficienty, systémy lineárních rovnic s konstantními koeficienty.
Literatura
    doporučená literatura
  • DOŠLÁ, Zuzana a Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné. 2. dotisk 1. vyd. Brno: Masarykova univerzita, 2008, 215 s. ISBN 978-80-210-3121-0. info
  • DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011, 222 s. ISBN 978-80-210-5635-0. info
  • RÁB, Miloš. Metody řešení diferenciálních rovnic. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1989, 68 s. info
    neurčeno
  • ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 3., aktual. vyd. Brno: Masarykova univerzita, 2012. Elportál. ISBN 978-80-210-5882-8. url PURL info
  • HASIL, Petr a Petr ZEMÁNEK. Sbírka řešených příkladů z matematické analýzy II. https://goo.gl/hSLUV2
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. 1. vyd. Brno: Rektorát UJEP Brno, 1980, 89 s. info
  • Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 6. nezměn. Praha: Academia, 1974, 391 s. URL info
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 8072005871. info
  • ADAMS, R. A. a Christopher ESSEX. Calculus : a complete course. 7th ed. Toronto: Pearson, 2010, xvi, 973. ISBN 9780321549280. info
  • BRAND, Louis. Advanced calculus : an introduction to classical analysis. New York: John Wiley & Sons, 1955, x, 574. info
  • An introduction to ordinary differential equations. Edited by James C. Robinson. New York: Cambridge University Press, 2004, xiv, 399 p. ISBN 0521533910. info
Výukové metody
Standardní teoretická přednášky doplněné cvičeními.
Metody hodnocení
Úprava pro období pandemie (prezenční/online výuka dle situace):
Přednáška ani cvičení NEJSOU povinná.
Zkouška prezenčně nebo online. Konkrétní průběh dle situace v dané době.
Ostatní standardní pravidla dle možností zachována.

Standardní pravidla pro běžné semestry:
Přednáška 4 hodiny týdně, cvičení (povinná) 2 hodiny týdně.
Ve cvičeních 5 kontrolních písemek (dohromady 10 % z celkového hodnocení).
Zkouška: Písemná část (55 %) a ústní část (35 %).
K úspěšnému zvládnutí: Minimálně 5 z 10 bodů z kontrolních písemek, poté celkově minimální zisk 45 %.
Výsledky kontrolních písemek jsou součástí celkového hodnocení. Všechna procenta jsou uvedena vzhledem k celkovému úhrnu za celý semestr.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2025.