Masarykova univerzita

Výpis publikací

česky | in English

Filtrování publikací

    2022

  1. GKIKAS, Konstantinos T. a Phuoc Tai NGUYEN. Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations. Calculus of Variations and Partial Differential Equations. Springer, 2022, roč. 61, č. 1, s. 1-36. ISSN 0944-2669. doi:10.1007/s00526-021-02102-6.
  2. 2021

  3. BHAKTA, Mousomi, Debangana MUKHERJEE a Phuoc Tai NGUYEN. Multiplicity and uniqueness for Lane-Emden equations and systems with Hardy potential and measure data. Journal of Differential Equations. Elsevier Inc., 2021, roč. 304, December, s. 29-72. ISSN 0022-0396. doi:10.1016/j.jde.2021.09.037.
  4. MUKHERJEE, Debangana, Phan Thanh NAM a Phuoc Tai NGUYEN. Uniqueness of ground state and minimal-mass blow-up solutions for focusing NLS with Hardy potential. Journal of Functional Analysis. Academic Press Inc., 2021, roč. 281, č. 5, s. "109092", 45 s. ISSN 0022-1236. doi:10.1016/j.jfa.2021.109092.
  5. 2020

  6. GKIKAS, Konstantinos T. a Phuoc Tai NGUYEN. Elliptic Equations with Hardy Potential and Gradient-Dependent Nonlinearity. Advanced Nonlinear Studies. Berlin: Walter de Gruyter GmbH, 2020, roč. 20, č. 2, s. 399-435. ISSN 1536-1365. doi:10.1515/ans-2020-2073.
  7. NGUYEN, Quoc-Hung, Phuoc-Tai NGUYEN a Bao Quoc TANG. Energy conservation for inhomogeneous incompressible and compressible Euler equations. Journal of Differential Equations. San Diego (USA): Elsevier Science, 2020, roč. 269, č. 9, s. 7171-7210. ISSN 0022-0396. doi:10.1016/j.jde.2020.05.025.
  8. BHAKTA, Mousomi a Phuoc Tai NGUYEN. On the existence and multiplicity of solutions to fractional Lane-Emden elliptic systems involving measures. Advances in Nonlinear Analysis. Berlin: Walter de Gruyter GmbH, 2020, roč. 9, č. 1, s. 1480-1503. ISSN 2191-9496. doi:10.1515/anona-2020-0060.
  9. GKIKAS, Konstantinos a Phuoc Tai NGUYEN. Semilinear elliptic equations with Hardy potential and gradient nonlinearity. Revista Matematica Iberoamericana. Zurich: European Mathematical Society, 2020, roč. 36, č. 4, s. 1207-1256. ISSN 0213-2230. doi:10.4171/RMI/1164.
  10. 2019

  11. NGUYEN, Quoc-Hung, Phuoc Tai NGUYEN a Bao Quoc TANG. Energy equalities for compressible Navier-Stokes equations. NONLINEARITY. BRISTOL: IOP PUBLISHING LTD, 2019, roč. 32, č. 11, s. 4206-4231. ISSN 0951-7715. doi:10.1088/1361-6544/ab28ae.
  12. BHAKTA, Mousomi a Phuoc Tai NGUYEN. Nonlinear fractional elliptic systems with boundary measure data: Existence and a priori estimates. Journal of Mathematical Analysis and Applications. SAN DIEGO: Elsevier, 2019, roč. 475, č. 2, s. 1614-1635. ISSN 0022-247X. doi:10.1016/j.jmaa.2019.03.034.
  13. GKIKAS, Konstantinos T. a Phuoc-Tai NGUYEN. On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials. JOURNAL OF DIFFERENTIAL EQUATIONS. Netherlands: Elsevier, 2019, roč. 266, č. 1, s. 833-875. ISSN 0022-0396. doi:10.1016/j.jde.2018.07.060.
  14. NGUYEN, Phuoc Tai a Hoang-Hung VO. On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. Germany: Springer, 2019, roč. 58, č. 3, s. 1-22. ISSN 0944-2669. doi:10.1007/s00526-019-1523-2.
  15. NGUYEN, Quoc-Hung a Phuoc-Tai NGUYEN. Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains. Journal of Nonlinear Science. New York: SPRINGER, 2019, roč. 29, č. 1, s. 207-213. ISSN 0938-8974. doi:10.1007/s00332-018-9483-9.
  16. MARCUS, Moshe a Phuoc-Tai NGUYEN. Schrödinger equations with singular potentials: linear and nonlinear boundary value problems. Mathematische Annalen. Germany: Springer Berlin Heidelberg, 2019, roč. 374, 1-2, s. 361-394. ISSN 0025-5831. doi:10.1007/s00208-018-1734-4.
  17. 2018

  18. NGUYEN, Phuoc-Tai a Laurent VÉRON. Boundary singularities of solutions to semilinear fractional equations. Advanced Nonlinear Studies. Germany: De Gruyter, 2018, roč. 18, č. 2, s. 237-267. ISSN 1536-1365. doi:10.1515/ans-2017-6048.
  19. 2017

  20. NGUYEN, Phuoc-Tai. Semilinear elliptic equations with Hardy potential and subcritical source term. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. Germany: Springer, 2017, roč. 56/2017, č. 2, s. 1-28. ISSN 0944-2669. doi:10.1007/s00526-017-1144-6.
  21. 2016

  22. NGUYEN, Phuoc-Tai. Isolated singularities of positive solutions of elliptic equations with weighted gradient term. Analysis & PDE. United States: Mathematical Sciences Publishers, 2016, roč. 9, č. 7, s. 1671-1692. ISSN 2157-5045. doi:10.2140/apde.2016.9.1671.
  23. 2015

  24. MARCUS, Moshe a Phuoc-Tai NGUYEN. Elliptic equations with nonlinear absorption depending on the solution and its gradient. Proceedings of the London Mathematical Society. England: Oxford University Press, 2015, roč. 111/2015, č. 1, s. 205-239. ISSN 0024-6115. doi:10.1112/plms/pdv020.
  25. NGUYEN, Phuoc-Tai a Hoang-Hung VO. Existence, uniqueness and qualitative properties of positive solutions of quasilinear elliptic equations. Journal of Functional Analysis. Netherlands: Elsevier, 2015, roč. 269/2015, č. 10, s. 3120-3146. ISSN 0022-1236. doi:10.1016/j.jfa.2015.09.003.
  26. MARCUS, Moshe a Phuoc-Tai NGUYEN. Moderate solutions of semilinear elliptic equations with Hardy potential. Annales de l'Institut Henri Poincaré. Analyse Non Linéaire. The Netherlands: Elsevier, 2015, roč. 34/2017, č. 1, s. 69-88. ISSN 0294-1449. doi:10.1016/j.anihpc.2015.10.001.
  27. 2014

  28. NGUYEN, Phuoc-Tai. Parabolic equations with exponential nonlinearity and measure data. Journal of Differential Equations. 2014.
  29. 2013

  30. NGUYEN, Phuoc-Tai a Laurent VÉRON. Initial trace of positive solutions of a class of degenerate heat equation with absorption. Discrete and Continuous Dynamical Systems. Series A. 2013.
  31. 2012

  32. NGUYEN, Phuoc-Tai a Laurent VÉRON. Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations. Journal of Functional Analysis. 2012.
  33. 2011

  34. NGUYEN, Phuoc-Tai a Laurent VÉRON. Local and global properties of solutions of heat equation with superlinear absorption. Advances in Differential Equations. 2011.
Zobrazit podrobně
Zobrazeno: 17. 8. 2022 02:59