MB141 Lineární algebra a diskrétní matematika

Fakulta informatiky
jaro 2020
Rozsah
2/2/0. 3 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Katedra teorie programování - Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Předpoklady
! NOW ( MB151 Lineární modely ) && ( ! MB151 Lineární modely || ! MB154 Diskrétní matematika ) && ( ! MB101 Lineární modely || ! MB104 Diskrétní matematika )
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory
předmět má 37 mateřských oborů, zobrazit
Cíle předmětu
Seznámení se základy lineární algebry a analytické geometrie.
Výstupy z učení
Na konci tohoto kurzu bude student schopen: rozumět základním konceptům lineární algebry a pravděpodobnosti; aplikovat tyto koncepty na iterované lineární procesy; řešit základní úlohy analytické geometrie.
Osnova
  • Kurs je první částí čtyřsemestrového bloku základních přednášek matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky. Obsah kurzu Lineární modely:
  • 1. Vektory a matice (3 týdny) – počítání s vektory (n-tice skalárů) a maticemi (eliminice proměnných v systémech lineárních rovnic); determinanty a výpočet inverzní matice; generátory podprostorů a báze; skalární součin, velikost a kolmost vektorů; elementární vlastnosti lineárních zobrazení, vlastní čísla a vlastní vektory.
  • 2. Lineární modely (3 týdny) – systémy lineárních rovnic a nerovnic; problém lineárního programování; lineární diferenční rovnice; iterované lineární procesy (populační modely a diskrétní Markovovy řetězce).
  • 3. Analytická geometrie (2 týdny) – afinní objekty a zobrazení (přímka, rovina, konvexnost, poměr); odchylky, obsah, objem, viditelnost; elementární přehled kvadrik.
Literatura
    doporučená literatura
  • MOTL, Luboš a Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002. 348 s. ISBN 8024604213. info
  • RILEY, K.F., M.P. HOBSON a S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004. 1232 s. ISBN 0 521 89067 5. info
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
    neurčeno
  • FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978. 175 s. info
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993. 145 s. ISBN 8021008164. info
Výukové metody
Dvouhodinová přednáška a dvouhodinové cvičení. Přednáška kombinující teorii a ilustrativní řešené příklady. Cvičení zaměřené na zvládnutí početních úloh.
Metody hodnocení
Během semestru jsou dvě povinné vnitrosemestrální písemky, každá na max 10 bodů. Ve cvičení se píše 5 malých písemek. Cvičení je celkově ohodnoceno max 5 body. Studenti, kteří během celého semestru (tj. ze cvičení a z vnitrosemestrálních písemek) nasbírají méně než 8 bodů, budou hodnoceni známkou X a k závěrečné zkoušce již nejdou. Závěrečná písemná zkouška je na max 20 bodů. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 22 bodů.
Nachází se v prerekvizitách jiných předmětů

  • Permalink: https://is.muni.cz/predmet/fi/jaro2020/MB141