M1110 Lineární algebra a geometrie I

Přírodovědecká fakulta
podzim 2021
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. Mária Šimková (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 10:00–11:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M1110/01: Po 14:00–15:50 M2,01021, M. Šimková
M1110/02: Čt 14:00–15:50 M2,01021, I. Kossovskij
M1110/03: Čt 14:00–15:50 M4,01024, M. Čadek
M1110/04: Út 16:00–16:50 M1,01017, St 12:00–13:50 M2,01021, M. Čadek
Předpoklady
Středoškolská matematika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Lineární algebra patří k základům matematického vzdělání. Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, *budou schopni tyto pojmy běžně používat v dalším studiu, *naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Výstupy z učení
Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, * budou schopni tyto pojmy běžně používat v dalším studiu, * naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Osnova
  • Vektorové prostory. Operace s maticemi. Gaussova eliminace. Podprostory. Lineární nezávislost. Báze a dimenze. Souřadnice. Lineární zobrazení. Matice lineárního zobrazení. Soustavy lineárních rovnic. Determinanty. Afinní podprostory
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v~Bratislavě, elektronicky dostupné na http://thales.doa.fmph.uniba.sk/katc/
  • HORÁK, Pavel. Úvod do lineární algebry. 3. vyd. Brno: Rektorát UJEP Brno, 1980, 135 s. info
  • Anton H., Rorres.C.: Elementary Linear Agebra, 8th edition, Application Version, Wiley, 2000, ISBN 0471170526.
  • ŠMARDA, Bohumil. Lineární algebra. Praha: Státní pedagogické nakladatelství, 1985, 159 s. info
  • ŠIK, František. Lineární algebra zaměřená na numerickou analýzu. Vyd. 1. Brno: Masarykova univerzita v Brně, 1998, 177 s. ISBN 8021019662. info
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
Výukové metody
Přednášky, cvičení a domácí úlohy.
Metody hodnocení
Zkouška má tři části. 1. část: V průběhu semestru dostanou studenti 8 domácích úkolů, z každého mohou získat 10 bodů. Student musí získat za semestr aspoň polovinu z maximálního počtu bodů, tj. 40 bodů. Nepodaří-li se mu to, bude psát opravnou písemku na začátku zkouškového období. Z té musí získat polovinu bodů. 2. část: Splní-li student předpoklady 1. části zkoušky, může se přihlásit k písemné části zkoušky ve zkouškovém období. Písemka má část početní a teoretickou. V části teoretické je potřeba získat 5 bodů z 10, v části početní 7 bodů z 12. K výsledku početní části se přičte bonifikace za domácí úlohy u těch studentů, kteří dosáhli více než 40 bodů. Velikost bonifikace v bodech činí: (počet bodů za DU-40) děleno 10 a zaokrouhleno na poloviny bodů směrem dolů. 3. částí zkoušky je ústní zkouška, ke které student postoupí, když splní předpoklady druhé části zkoušky. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce a cvičení, v případě distanční výuky vystaveném v průběhu semestru na webové stránce předmětu.
Navazující předměty
Informace učitele
Na podzim 2021 budou do odvolání probíhat přednášky prezenční formou v době podle rozvrhu. Cvičení začneme prezenční formou, v případě nutnosti přejdeme na online formu. Metody hodnocení - viz výše. Aktuální informace najdete v úvodní části interaktivní osnovy. Rovněž se budou posílat emailem.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 1999, podzim 2010 - akreditace, podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2022, podzim 2023, podzim 2024.