Masarykova univerzita

Výpis publikací

česky | in English

Filtrování publikací

    2022

  1. ZEMÁNEK, Petr. Resolvent and spectrum for discrete symplectic systems in the limit point case. Linear Algebra and its Applications. Elsevier, 2022, roč. 634, February, s. 179-209. ISSN 0024-3795. doi:10.1016/j.laa.2021.11.001.
  2. 2021

  3. ZEMÁNEK, Petr. Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter. Journal of Mathematical Analysis and Applications. Elsevier, 2021, roč. 499, č. 2, s. "125054", 37 s. ISSN 0022-247X. doi:10.1016/j.jmaa.2021.125054.
  4. ZEMÁNEK, Petr. Optimalizace aneb když méně je více. 2021.
  5. ZEMÁNEK, Petr, Jana ZUZAŇÁKOVÁ a Markéta ZOUBKOVÁ. Sbírka řešených příkladů z matematického programování. 2021.
  6. 2020

  7. ZEMÁNEK, Petr. Linear operators associated with differential and difference systems: What is different? In Steve BaigentMartin BohnerSaber Elaydi. Progress on Difference Equations and Discrete Dynamical Systems. ICDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 341. Cham: Springer, 2020. s. 435-448. ISBN 978-3-030-60106-5. doi:10.1007/978-3-030-60107-2_25.
  8. 2018

  9. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. On square integrable solutions and principal and antiprincipal solutions for linear Hamiltonian systems. Annali di Matematica Pura ed Applicata. Series IV. Berlin: Springer, 2018, roč. 197, č. 1, s. 283-306. ISSN 0373-3114. doi:10.1007/s10231-017-0679-7.
  10. 2017

  11. ZEMÁNEK, Petr. Principal solution in Weyl-Titchmarsh theory for second order Sturm-Liouville equation on time scales. Electronic Journal of Qualitative Theory of Differential Equations. SZEGED, HUNGARY: UNIV SZEGED, BOLYAI INSTITUTE, 2017, Neuveden, č. 2, s. 1-18. ISSN 1417-3875. doi:10.14232/ejqtde.2017.1.2.
  12. 2016

  13. ZEMÁNEK, Petr a Stephen L. CLARK. Characterization of self-adjoint extensions for discrete symplectic systems. Journal of Mathematical Analysis and Applications. San Diego: Elsevier, 2016, roč. 440, č. 1, s. 323-350. ISSN 0022-247X. doi:10.1016/j.jmaa.2016.03.028.
  14. ZEMÁNEK, Petr. Limit point criteria for second order Sturm-Liouville equations on time scales. In S. Pinelas, Z. Došlá, O. Došlý, P. E. Kloeden. Differential and Difference Equations with Applications. NEW YORK: Springer, 2016. s. 331-338. ISBN 978-3-319-32855-3. doi:10.1007/978-3-319-32857-7_31.
  15. HASIL, Petr a Petr ZEMÁNEK. Sbírka řešených příkladů z matematické analýzy II. Masarykova univerzita, 2016.
  16. 2015

  17. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Limit circle invariance for two differential systems on time scales. Mathematische Nachrichten. Akademie-Verlag, 2015, roč. 288, 5-6, s. 696-709. ISSN 0025-584X. doi:10.1002/mana.201400005.
  18. CLARK, Stephen L. a Petr ZEMÁNEK. On discrete symplectic systems: associated maximal and minimal linear relations and nonhomogeneous problems. Journal of Mathematical Analysis and Applications. Elsevier, 2015, roč. 421, č. 1, s. 779-805. ISSN 0022-247X. doi:10.1016/j.jmaa.2014.07.015.
  19. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Time scale symplectic systems with analytic dependence on spectral parameter. Journal of Difference Equations and Applications. London: Taylor and Francis, 2015, roč. 21, č. 3, s. 209-239. ISSN 1023-6198. doi:10.1080/10236198.2014.997227.
  20. 2014

  21. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Generalized Lagrange identity for discrete symplectic systems and applications in Weyl-Titchmarsh theory. In Z. AlSharawi, J. Cushing, S. Elaydi. Theory and Applications of Difference Equations and Discrete Dynamical Systems. Berlin: Springer, 2014. s. 187-202. ISBN 978-3-662-44139-8. doi:10.1007/978-3-662-44140-4_10.
  22. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Limit point and limit circle classification for symplectic systems on time scales. Applied Mathematics and Computation. Spojené státy americké: Elsevier, 2014, roč. 233, MAY, s. 623-646. ISSN 0096-3003. doi:10.1016/j.amc.2013.12.135.
  23. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on spectral parameter. Journal of Difference Equations and Applications. Taylor and Francis, 2014, roč. 20, č. 1, s. 84-117. ISSN 1023-6198. doi:10.1080/10236198.2013.813496.
  24. 2013

  25. ZEMÁNEK, Petr. A note on the equivalence between even order Sturm-Liouville equations and symplectic systems on time scales. Applied Mathematics Letters. USA: Elsevier, 2013, roč. 26, č. 1, s. 134-139. ISSN 0893-9659. doi:10.1016/j.aml.2012.04.009.
  26. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints. Advances in Difference Equations. Berlín: Springer, 2013, roč. 2013, č. 232, s. 1-18. ISSN 1687-1847. doi:10.1186/1687-1847-2013-232.
  27. 2012

  28. ZEMÁNEK, Petr a Petr HASIL. Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales. Applied Mathematics and Computation. Spojené státy americké: Elsevier, 2012, roč. 218, č. 22, s. 10829‑10842, 14 s. ISSN 0096-3003. doi:10.1016/j.amc.2012.04.027.
  29. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. New results for time reversed symplectic dynamic systems and quadratic functionals. Electronic Journal of Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, University of Szeged, 2012, Neuveden, č. 15, s. 1-11. ISSN 1417-3875.
  30. ZEMÁNEK, Petr. Rofe-Beketov formula for symplectic systems. Advances in Difference Equations. Springer, 2012, roč. 2012, č. 104, s. 1-9. ISSN 1687-1847. doi:10.1186/1687-1847-2012-104.
  31. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 3., aktual. vyd. Brno: Masarykova univerzita, 2012. Elportál. ISBN 978-80-210-5882-8.
  32. 2011

  33. HASIL, Petr a Petr ZEMÁNEK. Critical second order operators on time scales. Discrete and Continuous Dynamical Systems. Springfield, Missouri: AIMS (American Institute of Mathematical Sciences), 2011, roč. 31, č. 2011, s. 653-659. ISSN 1078-0947.
  34. DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011. 222 s. ISBN 978-80-210-5635-0.
  35. ZEMÁNEK, Petr. Krein-von Neumann and Friedrichs extensions for second order operators on time scales. International Journal of Dynamical Systems and Differential Equations. Ženeva: Indersci. Enterp. Ltd., 2011, roč. 3, 1-2, s. 132-144. ISSN 1752-3583.
  36. ZEMÁNEK, Petr. New Results in Theory of Symplectic Systems on Time Scales. první. Brno: Masarykova univerzita, 2011. 98 s. ISBN 978-80-210-5515-5.
  37. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Overview of Weyl-Titchmarsh theory for second order Sturm-Liouville equations on time scales. Int. J. Difference Equ. Delhi: Research India Publications, 2011, roč. 6, č. 1, s. 39-51. ISSN 0973-6069.
  38. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Weyl-Titchmarsh theory for time scale symplectic systems on half line. Abstract and Applied Analysis. New York: Hindawi Publishing Corporation, 2011, roč. 2011, č. 738520, s. 1-41. ISSN 1085-3375. doi:10.1155/2011/738520.
  39. 2010

  40. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval. Mathematica Bohemica. Praha: Matematický ústav AV ČR, 2010, roč. 315, č. 2, s. 209-222. ISSN 0862-7959.
  41. CLARK, Stephen L a Petr ZEMÁNEK. On a Weyl-Titchmarsh theory for discrete symplectic systems on a half line. Applied Mathematics and Computation. Spojené státy americké: Elsevier, 2010, roč. 217, č. 7, s. 2952-2976. ISSN 0096-3003.
  42. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 2., aktual. vyd. Brno: Masarykova univerzita, 2010. Elportál. ISSN 1802-128X.
  43. ZEMÁNEK, Petr a Petr HASIL. Sbírka řešených příkladů z matematické analýzy I. 1. vyd. Brno: Masarykova univerzita, 2010. Elportál. ISSN 1802-128X.
  44. 2009

  45. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Definiteness of quadratic functionals for Hamiltonian and symplectic systems: A survey. International Journal of Difference Equations. Delhi (Indie): Research India Publications, 2009, roč. 4, č. 1, s. 49-67. ISSN 0973-6069.
  46. ZEMÁNEK, Petr. Discrete trigonometric and hyperbolic systems: An overview. Ulm: University of Ulm, 2009. 14 s.
  47. ŠIMON HILSCHER, Roman a Petr ZEMÁNEK. Trigonometric and hyperbolic systems on time scales. Dynamic Systems and Applications. Atlanta, USA: Dynamic Publishers,Inc., 2009, roč. 18, 3-4, s. 483-506. ISSN 1056-2176.
  48. 2007

  49. ZEMÁNEK, Petr. Symplektické diferenční systémy. Brno: Masarykova univerzita, 2007. Diplomová práce.
Zobrazit podrobně
Zobrazeno: 18. 5. 2022 03:28